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Abstract

Purpose of Review—Many thousands of research papers have been published on the 

occurrence, health effects, and mitigation of arsenic in drinking water sourced from groundwater 

around the world. Here, an attempt is made to summarize this large body of knowledge into a 

small number of lessons.

Recent Findings—This is an opinion paper reflecting on why we are far from the goal of 

eliminating this silent and widespread poison to protect the health of many millions. The lessons 

are drawn from research in countries representing a range of economic development and cultural 

contexts. The replacement of household wells with centralized water supplies has reduced 

population level exposure to moderate (50–100 μg/L) and high (>100 μg/L) levels of arsenic in 

drinking water in some countries as they become wealthier. However, there remains a very large 

rural population in all countries where the exposure to low levels (10–50 μg/L) of arsenic 

continues due to its dispersed occurrence in the environment and frequent reliance on private well. 

A set of natural (geological and biological), socioeconomic, and behavioral barriers to progress are 

summarized as lessons. They range from challenges in identifying the exposed households due to 

spatially heterogeneous arsenic distribution in groundwater, difficulties in quantifying the 

exposure let alone reducing the exposure, failures in maintaining compliance to arsenic drinking 

water standards, to misplaced risk perceptions and environmental justice issues.

Summary—Environmental health professionals have an ethical 

obligationtohelpAsmitigationamongprivatewellwaterhouse-holds, along with physicians, 

hydrogeologists, water treatment specialists, community organizations, and government.
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Introduction

Arsenic (As) is one of the World Health Organization (WHO)’s 10 chemicals of major 

public health concern, with a WHO recommended drinking water guideline value of 10 μg/L 

[1]. Chronic exposure to As in drinking water has been shown to result in skin, bladder, and 

lung cancers, as well as a variety of adverse non-cancer health outcomes, including 

cardiovascular disease, diabetes, non-neoplastic respiratory changes, and neuropathy [2–4]. 

Especially troublesome is arsenic exposure in utero and during early life [5] which has 

resulted in a magnitude of effect not yet found for any other environmental exposure [6]. 

The negative outcomes include reductions in IQ [7], increased mortality from acute 

myocardial infarction later in life [8], and significantly increased risk of death from lung 

cancer and pulmonary disease as a young adult.

Arsenic is a minor element in the Earth’s upper crust with an abundance of 4.8 mg/kg [9], 

with its mobility in groundwater primarily controlled by redox conditions when pH is 

circumneutral [10]. In addition to arsenic enrichment in many low-lying unconsolidated 

sediment aquifer systems where the reducing conditions prevail [11], hot springs and acid 

mine drainage sourced arsenic have been known to pollute down gradient surface water 

bodies [12–14]. Given that As is not rare in nature and that reducing groundwater is quite 

common, many areas of the world relying on groundwater for drinking are therefore at risk 

of having a sizeable As exposed population. Not only the likelihood of its occurrence has 

been assessed by geostatistical models [15–19] but also various degrees of geogenic As 

problems have also been reported in over 70 countries affecting an estimated >100 million 

people’s drinking water supply [20]. However, the population exposed to As globally is still 

not well defined due to incomplete testing of hundreds of millions of mostly private 

household wells, which, unlike public water supply, are not required to meeting drinking 

water quality standards in most countries.

What lessons have been learned from many years of research centered around occurrence, 

hydrogeochemistry, and health effects of As? This paper aims to critically assess such 

available knowledge to shed light on issues relevant to exposure reduction that may be 

worthy of sustained attention, with different degree of emphasis to suit a particular country’s 

context. The hope is that these lessons will stimulate discussions among environmental 

health professionals who have more experience in dealing with exposure reduction of 

anthropogenic sourced pollutants, in contrast to naturally occurring arsenic for which there 

is usually no villain to blame. In order to overcome the challenges presented by the tasteless, 

odorless, and naturally occurring As in drinking water affecting mostly dispersed rural 

populations, environmental health professionals who hope to act on this hazard may find it 

helpful to consider these lessons and to expand on them.
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Part I. Lessons from Spatially Heterogeneous Arsenic Distribution in 

Groundwater

Lesson 1. Work with Hydrogeologists to Identify Arsenic-Safe Groundwater for Water 
Supply

Population level exposure reduction has been made possible through careful “mapping” to 

delineate where low As groundwater exists [21], augmented by research that illustrates how 

such water can be utilized reliably for individual or communal water supply to avoid arsenic 

[22]. The mapping is necessary because the vast majority of As in drinking water supply is 

due to its occurrence in groundwater which is drawn from an x-y-z (longitude, latitude, and 

depth) point subsurface. Such low As zones in groundwater systems have been observed 

throughout South and Southeast Asia [23]. However, the vulnerability of these zones if the 

water is pumped out at high rates such as for irrigation use or municipal supply, would still 

require careful assessment [24–26]. It has been shown, for example, that the deeper 

Pleistocene low As zones in Bangladesh can be tapped for drinking although using it for 

irrigation is not recommended [27]. Although the x-y coordinates of a water point can now 

be measured within <10-m precision by any GPS enabled devices, the z coordinate (depth) 

is more prone to error because it is often based on self-reporting unless the wells have been 

registered with government agencies and can be verified by a drilling record—this is not 

always the case even in the USA [28].

When utilizing a low As water source to avoid As, it is prudent to monitor As concentrations 

annually, especially for private wells located in areas where As is known to occur. Large 

volume pumping in surrounding aquifers has been shown to induce changes in groundwater 

flow patterns, which in turn, induce variations in As concentrations. For example, the US 

Geological Survey examined five hydrologically distinct aquifer systems in the USA and 

found that increases in well water arsenic levels from the Floridan aquifer near Tampa, 

Florida, and the sedimentary aquifers in eastern Wisconsin were due to large volume 

pumping by nearby public supply wells [29]. Further analysis of factors affecting temporal 

variability of arsenic in US groundwater confirm that arsenic concentrations mostly vary by 

small amounts (only 11% of wells show increases or decreases in concentrations of arsenic ≥ 

± 4 μg/L), but concentrations in public supply wells vary more than in private domestic wells 

[30].

Lesson 2. One High As Value Means that there Are Other Non-compliant Wells Nearby

The spatially heterogeneous arsenic distribution patterns have been qualitatively described as 

exhibiting “point” characteristics at local scale (101–103 m) and “belt” or “cluster” 

characteristics at regional scale (103–105 m). The truth is that we still do not know what 

hydrogeological and biogeochemical processes are responsible for such patterns and how 

they might evolve with time. With colored dots representing low, medium, high, to very high 

levels of well water As, the resulting As point spatial distribution map can appear to be more 

like a Monet painting than actual data [21, 31, 32]. Because the locations of wells are 

determined by where people live and use groundwater and are not designed to be part of a 

representative sampling program to ascertain mechanisms regulating As spatial patterns 

which can benefit from an equal area grid sampling approach [33], this makes the science of 
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understanding the underlying causes for the spatially heterogeneous arsenic distribution 

patterns very challenging. For example, even the simple task of describing the variability at 

various spatial scales suffers from uneven sample distribution and inadequate sampling 

density (Table 1).

Despite such challenges, we have done enough surveys in enough places with a range of 

spatial sampling density and distribution patterns to know that if by chance a survey finds a 

high As well, it is inevitable that many more wells with lesser yet still not in compliance As 

levels are nearby. This is because the distribution of arsenic concentrations within a given 

geographic region is highly skewed (Table 1). So, when testing identifies a well with very 

high As of >100 μg/L, it means there will be more nearby wells that will have 10–100 μg/L 

of As. On the contrary, testing one well in a given area and finding not-detectable As (in 

most cases <1 μg/L of As) should be interpreted with great caution because the chance of 

finding not-detectable As in an area with higher levels present can be as large as >80% 

(Table 1). Given the high likelihood of not detecting As in most local surveys, it would be 

prudent to test at least 10 samples in the same hydrogeologic unit to have a better chance of 

not missing the above 10 μg/L of As sample. We wish we knew more about how many wells 

in 1 km2 should be sampled to obtain a representative, stable, or more “true” As distribution 

for that 1 km2 area, and even then, this still needs to be interpreted considering the 

hydrochemical settings of the aquifer. A sampling density of 1–5/km2 is found to be 

sufficient to capture the groundwater As occurrence rate in fractured bedrock aquifers of 

New England at the intermediate spatial scale (103–104 m). However, to do the same at local 

scales of <102 m, higher sampling density of 10 s of wells per square kilometer is desirable 

[28]. Thus, the occurrence of a very high As well should justify a public health action plan 

to test all nearby wells within 1 km of its radius and/or in the same hydrogeologic unit.

Part II. Lessons from Exposure Assessment and Reduction

Lesson 3. Always Test, Even with Field Test Kits to Enable Testing among the Rural Poor

Given the spatial heterogeneity, the only reliable way to determine whether a water sample is 

compliant with a drinking water standard is to conduct a test, yet how reliable that test is 

depends on not just the capabilities inherent in the laboratory methodologies but also those 

of the samplers and testers. This also means that sampling protocols should include 

sufficient numbers of blanks to trace sources of artificially introduced contamination, 

replicates, and blind quality assurance (QA) and quality control (QC) samples to monitor 

and to minimize human errors. The most sensitive and precise modern instrumentation 

method for As analysis is the high-resolution inductively coupled plasma mass spectrometry 

(ICP-MS). When it was employed by highly skilled research scientists in a controlled 

laboratory setting [36], the blanks were still 0.08 μg/L of As when the highest purity acids 

were used to pre-treat samples and the detection limit was 0.07 μg/L of As. Repeated 

analysis of a natural water standard (NIST 1640) with a certified As level of 26.67 μg/L 

yielded As concentrations of 26.3 ± 0.5 μg/L of As (n = 26), a precision of 2%. In practice, 

because blanks could be higher and more variable, instrument settings could fluctuate 

beyond what can be controlled by internal standards, the detection limit and precision can 

only be worse than the aforementioned. For example, the 2009 Bangladesh drinking water 
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quality survey employed a conventional ICP-MS method for analysis through a reputable 

Canadian commercial testing laboratory which reported a method detection limit of 1 μg/L 

of As, although the blanks collected along with water samples in the field averaged 0.53 

μg/L of As after excluding 21(10.3%) out of the 203 labeled blanks because the excluded 

blanks showed very high As values which were attributed to mislabeling [34]. Thus, in 

practice, As concentrations can probably be ascertained to 1 μg/L with a precision of around 

10% assuming human errors are being properly dealt with.

The errors inherent in As laboratory analysis despite best practice means that there will 

always be some mis-classification of whether a water sample is in compliance around the 

current 10 μg/L of As standard adopted by many governments. With the lowering of 

drinking water standards to 5 μg/L of As by some governments, the likelihood of 

misclassification becomes even higher. In light of this, even though the commercial test kits 

are meant to be qualitative, it is remarkable how well they have performed in real-world 

settings. When the ITS Econo Quick As test kit was used by highly trained hydrogeologists 

in Maine to test 25 pairs of raw and treated private well water, there is only one non-matched 

result: a sample with 7 μg/L of As determined by HR ICP-MS analysis had a test kit reading 

of about 25 μg/L [37]. The same test kit was used in Bangladesh to test 123 wells by locals 

who were trained and hired to be testers by an NGO. Relative to 10 μg/L of As, the kit 

underestimated 11% of the samples and overestimated 0% of the samples; relative to 50 

μg/L of As, the kit both underestimated and overestimated 4% of the samples, when 

compared to HR ICP-MS measurements [38]. It is worth noting that usually, under or over 

estimates are not more than one category apart so the kit is still useful in identifying hazard 

[39]. All things considered, because millions of wells remain untested, a wider range of 

testing methods including field test kits should be considered and even recommended to 

community organizations interested in testing, especially for screening purposes in rural 

areas where poverty concentrates. It is of course useful to have laboratory tests to confirm 

the test kit results and to ascertain other water chemistry parameters, especially in high-

income countries where the next action is to treat water. The test kits have the additional 

advantage of “visualizing” the invisible hazard As among the private well households and 

are immediately available to the concerned; although how this may impact the risk 

perception of individuals has not been studied.

Lesson 4. Test a Biomarker, Analyze Arsenic Species when Urinary Total As is Above 15 
μg/L

Due to its long latency for some health outcomes, assessment of lifetime exposure to arsenic 

is a critical task for epidemiologists interested in evaluating health effects. However, for the 

purpose of evaluating exposure reduction, the task is simpler because a comparison of 

urinary arsenic levels among the exposed before and after access to As-safe water is usually 

sufficient. An additional advantage of biomonitoring is that health insurance may cover the 

cost of urinary arsenic tests in most high-income countries should a physician request it, 

whereas in most cases, a water arsenic test has to be paid for by the well owner. Yet, 

physicians would need a medical reason to request testing. Further, interpretation of urinary 

total As level is fraught with complications from dietary arsenic intake and from metabolism 

of inorganic As to organic As species. It is only until very recently that careful analysis of 
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urinary As speciation data in large populations illuminated what may be considered 

“normal” urinary arsenic composition as well as the total As level [40••]. Taking advantage 

that urinary arsenobetaine is a specific biomarker for seafood intake and is excreted without 

being metabolized, As speciation analysis results of urine samples from the Multi-Ethnic 

Study of Atherosclerosis (MESA, n = 310) and the 2003–2006 National Health and 

Nutrition Examination Survey (NHANES, n = 1175) participants showed that the median 

value of urinary total As level is 8.1 and 5.1 μg/L before and 3.1 and 2.5 μg/L after the 

seafood-sourced As signal was removed, respectively. Because the study subjects in MESA 

are from urban places in the USA and in NHANES they are from both rural and urban US 

areas, hence likely, a representative sample of the US population and are not known to have 

been exposed to drinking water-sourced As, it is not surprising that even at this normal 

urinary total As level, subjects who consumed rice more than twice a week displayed 1.75 

times higher seafood-free urinary As geometric mean values than those who never or rarely 

consumed rice. Although more studies in other populations on what is considered normal 

and ways to correct for seafood “interferences” would be valuable, it appears that if a 

person’s total urinary As level is above 15 μg/L, the 75th percentile uncorrected value of the 

MESA cohort, then it is reason enough to trigger a test of As in the drinking water of the 

person, and if possible, urinary As speciation.

Among arsenic-exposed populations, mitigation interventions have indeed led to reduction 

in urinary total arsenic level. In Guizhou, China, where villagers were exposed to very high 

levels of As in their diet through consumption of As-contaminated chili peppers and corn 

dried over unventilated stoves that burned coal containing high levels of As, a government-

led intervention effort that included closing of high As coal mines and introduction of 

ventilated stoves lowered the urinary total As levels by a factor of 4 among arsenicosis 

patients and the control group [41]. In San Pedro de Atacama, Chile, the mean value of 

urinary total As level of residents (n = 73) decreased from 636 to 166 μg As/L after they 

were provided with drinking water containing ~45 μg As/L for 2 months [42]; the urinary As 

speciation profiles were mostly similar except for a small decrease in %inorganic As and 

MMA/DMA ratio post intervention. In Araihazar, Bangladesh, the baseline urinary As level 

in participants (n = 11,746) in a prospective cohort study averaged 375 μg As/g creatinine. 

Later, the urinary As level of those who reported switching to a well identified as meeting 

Bangladesh drinking water standard of 50 μg As/L dropped to an average of 200 μg As/g 

creatinine [43]. The urinary As level in micrograms per liter is roughly one half of the 

micro-gram As per gram creatinine. While this reduction of As exposure is encouraging, it is 

clear the Bangladesh population has a much higher arsenic burden (Table 1) even if the 

country manages to supply water at <50 μg As/L to all.

Part III. Lessons from Maintaining Compliance to Arsenic in Drinking Water 

Standards

Lesson 5. The Smaller the Water Supply, the Higher the Failure Rate of Arsenic Treatment

US EPA has carried out demonstrations of arsenic treatment technologies [44] such as 

coagulation/filtration, adsorptive media, ion exchange, and iron removal systems to assist 

water utilities to select cost-effective ways to remove arsenic to below 10 μg/L level [45]. 

Zheng Page 6

Curr Environ Health Rep. Author manuscript; available in PMC 2018 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Coagulation/filtration was successful at the city of Los Angeles where source water had 22 

μg As/L [46] and at the city of Antofagasta in Northern Chile [47] where source water was 

~870 μg/L between 1958 and 1970 [48]. Although coagulation/filtration is an excellent 

method for treating arsenic sourced from surface water due to its efficient removal of 

inorganic As(V) for municipal water supply [49], it is not suitable for household water 

treatment due to the large space requirement.

The smaller the water supply system, the less it will benefit from the suitability of 

coagulation/filtration and the economy of scale. Not only this increases the cost for each 

person supplied but also introduces many opportunities for failure due to lack of human 

capacity. In September 2016, the Environmental Integrity Project reported that 95 

community water systems in California serving more than 55,000 people, many are poor 

and/or Latino or African-American clustered in the San Joaquin Valley, are still providing 

water with >10 μg As/L. In addition to conflicting county and state rules, many local water 

districts there struggled with indecision or a lack of money to supply safe water.

The smallest water supply is a private well, thus odds are against its treatment success. 

Additionally, reducing groundwater tend to have more inorganic As(III) and competing 

anions that interfere with As treatment than surface water, hence more difficult to treat [50]. 

This has led to ongoing efforts to optimize oxidation As(III) to As(V) as pretreatment [51] 

and a search for better adsorptive media [52–54] because reverse osmosis (RO) performs 

poorly in removing inorganic As(III) [55]. Based on practical experience, the New Jersey 

Department of Environmental Protection recommends granular ferric adsorption whole 

house system with one worker tank followed by a safety tank [56], along with monitoring of 

the treated water after the worker tank to ensure safety. This type of system costs on average 

US$2740 in 2007 dollars to install, the media last 2–3 years before needing replacement, 

and maintenance costs US$0.67–1.00/day. Although cost-effective As treatment 

technologies are available on the US market [57], it is nevertheless an unregulated market so 

consumers are left on their own to solve a complex water treatment puzzle. Without the 

necessary technological expertise afforded by the larger water supply system, the reality is 

some who have installed an As treatment unit still ended up not being able to obtain As safe-

water for a variety of reasons that include the consumers tendency to favor Point-of-Use 

(POU) RO which is the least reliable technically, although it should be noted that treated 

water in most cases is significantly improved (Table 2).

Lesson 6. Pay Attention to Biological, Behavioral, and Socioeconomic Vulnerabilities

In many ways, exposure reduction efforts to date have not carefully differentiated another 

kind of heterogeneity: even when the potential exposure dose is the same, research has 

identified biologically, behaviorally, and socioeconomically vulnerable groups. Work has 

only just begun to evaluate the implications of such heterogeneity because different groups 

will likely need different kinds of help to reduce exposure [63••]. For example, US doctors 

caring for pregnant women on private well water are not advising testing of drinking water 

en masse, so it is even less likely that a urinary As test will be ordered, even in high-risk 

areas. The American Academy of Pediatrics has issued a policy statement that called for 

pediatricians to encourage private-well households with children to test their water [64]. Yet, 
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our surveys in Maine find that only 14% of households with children cite their children as a 

main reason for having tested their well water, indicating that testing recommendation may 

not be passed along by pediatricians.

Researchers have also probed into the behavioral or psychological factors behind health 

protective actions of private well households in Bangladesh [65–69]; Ireland [70]; Ontario 

[71–73] and Nova Scotia [74, 75] of Canada; and Maine [37, 76], Montana [77], New Jersey 

[78•, 79, 80], Nevada [81, 82], Washington [77], and Wisconsin [83] of the USA. A common 

thread emerged from these studies is an optimistic bias whereby perceived risks are lower 

than objective risks [84], resulting in a heterogeneous response among exposed households 

in that some do not act to reduce exposure. A silver lining is that the probability of acting to 

mitigate As once the test results are disseminated to households increases with the level of 

As in Bangladesh [85], and in Maine [37], where 31% of households exposed to 10 and 50 

μg As/L did not act, compared to 11% of households with well water >50 μg As/L. A 

systematic review of the literature (>14,000 documents) [86] examining the efficacy of the 

use of water quality information dissemination at changing either household or community 

water management behavior could only identify six studies that met inclusion criteria, four 

of which were on As in Bangladesh, where 26–72% among those who received a positive 

test result switched to an As-safe source [43, 87–91]. Subsequent studies that applied the 

RANAS (risk, attitude, norm, ability, and self-regulation) model of behavior change to 

examine safe water use behaviors [67, 68], especially well switching in Bangladesh, has 

found that switching to an arsenic-safe water source was significantly associated with 

increased instrumental attitude, descriptive norm, coping planning, and commitment [92], 

although the switching rate declined over time [66]. When the same RANAS model was 

applied in Maine, the belief that the untreated water is not safe to drink (risk) and that 

reducing drinking water As would increase home value (instrumental attitude) were 

identified as significant predictors of mitigating As [37]. Although interventions targeting 

the behav-ioral barriers have shown promise [65, 66], it is far from certain that every 

exposed household can be “persuaded” to take action if not required by an authority to do 

so.

There is also an environmental justice issue in that lower income and less-educated groups 

are more affected by As in private well water. The most comprehensive study to date 

investigated this vulnerability in Maine and New Jersey and found that although there is no 

evidence for lower socioeconomic status groups disproportionately residing in areas with 

arsenic, disparities in exposure arise from differing rates of protective behaviors as well as 

psychological factors favoring such behaviors [80]. In Arizona, residents with higher income 

and education levels are more likely to treat water [61]. Likewise, level of education had a 

positive effect on the decision to avoid arsenic exposure in rural Bangladesh [69]. In New 

Jersey, a state law requiring arsenic to be tested during real estate transaction had a fortunate 

effect to partially address the socioeconomic disparity in voluntary testing [78•, 79].

From the ethics perspective, it is not right to knowingly expose a fraction of private well 

population to a poison. It also does not sit well while some countries are requiring more 

protective drinking water quality standards as low as 5 μg As/L while others are still using 

50 μg As/L. From the policy perspective, the benefits of New Jersey’s Private Well Testing 
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Act have led to a call for universal screening of private well water quality achieved through 

enacting more state and local government testing laws in the USA [63••]. The current 

laissez-faire approach adopted by most countries in managing private well water quality fails 

to address the multiple vulnerabilities.

Conclusion: The Way Forward

The United Nation’s proposed indicator of “safely managed drinking water services” calls 

for tracking the population accessing drinking water which is free of fecal contamination 

and priority chemical contaminants, including arsenic. Environmental health professionals 

can and should help address the dispersed low-level arsenic exposure among the rural poor 

in many countries. They can work more closely with physicians to encourage more testing of 

well water and urinary arsenic, support community groups to test well water using any 

reliable means rather than just laboratory methods, lean on hydrogeologists to plan their 

survey and to identify arsenic-safe groundwater source, and engage water treatment 

professionals to recommend best practices in maintaining treated water compliance. Lastly, 

government clearly has a role to play to ensure safety of the private water supplies relied on 

by a significant portion of the population, through looking at appropriate levels of 

regulations of both the water testing and water treatment. All people, independent of water 

source, should be protected from involuntary exposure to arsenic.
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